The green links below add additional plants to the comparison table. Blue links lead to other Web sites.
enable glossary links

chimaphile, pipsissewa, Prince's-pine, Prince's-plume

Habit Subshrubs, chlorophyllous, autotrophic. Herbs (rarely subshrubs), chlorophyllous and autotrophic or achlorophyllous and heterotrophic, mycotrophic, multicellular hairs present or absent; bark absent.
Stems

erect, rarely decumbent, glabrous or papillose to hispidulous, especially distally.

absent, or erect or decumbent.

Leaves

cauline, alternate or pseudoverticillate in 2–5(–6) whorls;

petiole present;

blade maculate or not, lanceolate, elliptic-lanceolate, ovate-lanceolate, oblong-lanceolate, ovate, lanceolate-oblong, oblanceolate, elliptic, or spatulate, coriaceous, margins entire, serrulate, serrate, or crenate-serrate, revolute, surfaces glabrous or papillose.

absent or persistent, sometimes scalelike, often much reduced, cauline and alternate or in basal rosettes or pseudoverticillate;

petiole present or absent;

blade plane or acicular, abaxial groove absent.

Inflorescences

corymbs or subumbels, rarely solitary flowers, not lax in bud or flower, erect in fruit, (symmetric);

peduncular bracts absent;

inflorescence bracts adnate to pedicels, sometimes scarcely so.

terminal racemes, umbels, corymbs, cymes, or solitary flowers;

perulae absent;

bracts shorter than, as long as, or longer than sepals.

Pedicels

erect in fruit, (glabrous or papillose to hispidulous);

bracteoles absent.

Flowers

radially symmetric, nodding or spreading;

sepals 5, connate proximally, often obscurely so, calyx lobes ovate, broadly ovate, or suborbiculate;

petals 5, distinct, white, pink, or rose, often tinged violet, without basal tubercles, (surfaces glabrous), corolla rotate to crateriform or broadly crateriform;

intrastaminal nectary disc present;

stamens 10, included;

filaments broad proximally, abruptly narrowed medially, slender distally, dilated basal portions ciliate or villous to densely villous;

anthers oblong, without awns, with tubules, dehiscent by 2 crescent-shaped to round pores;

pistil 5-carpellate;

ovary imperfectly 5-locular;

placentation intruded-parietal;

style (included), straight, expanded distally;

stigma entire or obscurely 5-ridged, without subtending ring of hairs.

radially symmetric to slightly bilaterally symmetric, horizontal, nodding, or spreading to erect;

sepals absent or 2-5(-6);

petals (3-)4-5(-6), connate or distinct, corolla deciduous or persistent, rotate, crateriform, cylindric, urceolate, or campanulate, if petals connate, lobes shorter than tube;

intrastaminal nectary disc present or absent;

stamens 8-10(-14);

anthers dehiscent by slits or pores;

ovary 1- or (4-)5(-6)-locular;

placentation axile or parietal;

style straight or declinate.

Fruits

capsular, erect, dehiscence loculicidal, no cobwebby tissue exposed by splitting valves at dehiscence.

capsular, dehiscence loculicidal or indehiscent to irregularly dehiscent, or baccate and indehiscent.

Seeds

ca. 1000, fusiform, winged.

25-1000+, distinct, fusiform or ovoid, winged or not.

x

= 13.

Chimaphila

Ericaceae subfam. monotropoideae

Distribution
from USDA
North America; Mexico; Central America; West Indies (Hispaniola); Eurasia
[BONAP county map]
North America; Mexico; Central America; West Indies (Hispaniola); n South America; Europe; Asia (including Sumatra)
Discussion

Species 5 (3 in the flora).

Ethnobotanical studies have documented a wide variety of drug and food uses of Chimaphila among more than two dozen tribes of Native Americans (D. E. Moerman 1998; K. Sheth et al. 1967).

(Discussion copyrighted by Flora of North America; reprinted with permission.)

Genera 14, species ca. 50 (12 genera, 21 species in the flora).

Two strictly Asiatic genera in the subfamily, Cheilotheca Hooker f. and Monotropastrum Andres, each contain two species.

A persistent error, that heterotrophic members of the Monotropoideae are saprophytic, was disproved by E. Björkman (1960), supported by T. E. Furman and J. Trappe (1971). These plants are considered epiparasitic, deriving their nutrition from coniferous or fagaceous hosts through mutually shared fungal associates. This mode of nutrition also is called mycoheterotrophy. Mycorrhizal associates of several genera have been investigated by K. W. Cullings et al. (1996) and M. I. Bidartondo and T. D. Bruns (2001, 2002).

Inflorescences, the only above-ground structures for these heterotrophic plants (excluding achlorophyllous forms of Pyrola), emerge from soil each year. One or more inflorescences develop from each perennial root system. Because the root systems may branch, it is generally not possible to determine whether any two inflorescences in proximity are derived from the same system. Thus, counting inflorescences as a measure of population sizes is essentially meaningless but may be an indication of the overall health of the plants and recent environmental conditions.

Conclusive distinctions among bracts and similar-appearing appendages without flowers in their axils are generally lacking. The latter are here called sterile bracts. Bracts and sterile bracts are generally similar in their sizes and shapes, but in some taxa sterile bracts are more appressed to the inflorescence axes or are conspicuously more succulent. Because similar structures occur in inflorescences of other Ericaceae and are uniformly sessile, it is difficult to justify calling these structures leaves.

Chlorophyllous members of the subfamily produce three types of similar, bractlike structures. Persistent bud scales, produced in winter buds at the end of each growing season, usually alternate with leaves at the base of the peduncle (H. F. Copeland 1947). Peduncles in all genera except Chimaphila bear up to five bracts, which sometimes subtend aborted flower buds. Individuals of nearly all species occasionally lack peduncular bracts. The pedicel of each flower (absent in Moneses) typically is subtended by a single bract. These inflorescence bracts are free from the pedicel in Orthilia and Pyrola; they are adnate proximally to the pedicel in Chimaphila, the bract thus appearing to arise from the pedicel. Bracteoles are absent.

Pollination studies of some species indicate that chlorophyllous members are largely outcrossing and entomophilous (H. B. Lovell and J. H. Lovell 1936; L. C. W. Jensen 1961; J. T. Knudsen and J. M. Olesen 1993). Knudsen and Olesen found the floral morphology of Chimaphila to be optimized for pollination by large, nectar-gathering insects, especially bumblebees. Moneses, which produces no nectar, is buzz-pollinated by pollen-gathering insects. Orthilia produces nectar and is visited by both nectar- and pollen-gathering insects. Pyrola produces no nectar and is buzz-pollinated.

(Discussion copyrighted by Flora of North America; reprinted with permission.)

Key
1. Inflorescence bracts broadly ovate to broadly obovate; inflorescences 1-3-flowered; calyx lobes (3-)5-6.5 mm; stigmas 1.6-2.2(-2.8) mm wide.
C. menziesii
1. Inflorescence bracts acicular to linear-lanceolate; inflorescences (1-)2-7-flowered; calyx lobes 1-4.1 mm; stigmas 2-4 mm wide
→ 2
2. Leaf blades maculate; dilated basal portions of filaments densely villous.
C. maculata
2. Leaf blades not maculate; dilated basal portions of filaments ciliate
C. umbellata
Source FNA vol. 8, p. 385. Author: Craig C. Freeman. FNA vol. 8, p. 377. Authors: Gordon C. Tucker, Gary D. Wallace.
Parent taxa Ericaceae > subfam. Monotropoideae Ericaceae
Subordinate taxa
C. maculata, C. menziesii, C. umbellata
Synonyms subfamily Pyroloideae, tribe Monotropaceae, tribe Pyrolaceae
Name authority Pursh: Fl. Amer. Sept. 1: 279, 300. 1813 , Arnott: M. Napier, Encycl. Brit. ed. 7 5: 118. (1832)
Web links